
*I 1 National Defense

Defence nationale

MDR/OMNI-BAND
RECONFIGURABLE TERMINAL

DATA PACKET SPECIFICATION (U)

by

Robin Addison

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
TECHNICAL NOTE 98-009

andS- .BUo, , A-•l August 1998
_____________ _______ Ottawa
A4pr9ved for public release;

Distribution Unlimited

Lm=,oyC %-cV- 0 7Q=2

I*f I National DMfense

Defence nationale

MDR/OMNI-BAND
RECONFIGURABLE TERMINAL

DATA PACKET SPECIFICATION (U)

by

Robin Addison
Milsatcom Group

Space System & Technology Section

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
TECHNICAL NOTE 98-009

Project August 1998
5CA11 Ottawa

Abstract

In 1997, Defence Research Establishment Ottawa and Communications Research Centre
started research into an omni-band reconfigurable terminal. Such a terminal will enable soldiers to
use a single terminal to communicate over any satellite communications or terrestrial link. Each
terminal will support multiple standards and the first one to be implemented will be extremely high
frequency medium data rate communications. Development begins with two hardware simulators:
the payload simulator and the ground terminal simulator. Each simulator has a PC-based host to
run the simulator, a digital chassis containing several digital signal processor boards to run the
payload or terminal, and a radio frequency chassis to interface to the digital boards. Within the
simulators, specifically on the digital signal processor boards, it is desirable to have a common
data format for interchange between modules to simplify interfacing and reconfiguration.

This document contains the data packet format, data packet validation, description of the
minimum implementation, expansion capabilities, coding excerpts and the listing of necessary
definitions for coding. The requirements of flexibility, simplicity and future expandability drove
the design of the data packets. Since the data packet design precedes the detailed system design,
future expandability was a key requirement. The data packet consists of a variable length header
and a variable length data area. The header includes the details of the data storage as well as
information about the data source and destination.

There is sufficient versatility in the specification to allow the data packet to be used for all
known intermodule data, and for new requirements. It is likely that this specification will be further
refined as requirements become firmer and the design of the simulator becomes better defined.

R sum6

En 1997, le Centre de recherches pour la defense Ottawa et le Centre de recherches des
communications ont entrepris une recherche sur une station terrestre reconfigurable 6 omni-bande.
Cette station terrestre serait capable de communiquer sur n'importe quelle bande de frrquence,
qu'elle soit terrestre ou par satellite. Chaque station supportera une multitude de normes de
communication et la premiere qui sera implantde sera celle de la bande millim~trique A taux moyen
de donnres. La recherche commence avec la d~veloppement de deux simulateurs hardware. Dans
chaque simulateur, il y aura un ordinateur PC pour le commander, plusieurs cartes 6i traitement
num~riques et un chassis fr~quence radio pour l'interface des cartes num6riques. Entre les
modules, particulierement pour le traitement numerique, il est important d'avoir un format de
donn~es commun qui permet la reconfiguration et qui simplifie l'interface.

Dans ce rapport, le format, la validation, la r~alisation minimum, les possibilitdes
d'accroissement, les exemples de logiciels et les definitions necessaires pour programme des
paquets de donnres sont fournis. La flexibilitd, la simplicit6 et le potentiel de l'accroissement ont
influenc6]a conception des paquets de donn~es. La capacit6 de faire des changements 6tait
essentielle parce que la conception du syst~me n'est pas encore finalis~e. L'en-tate des paquets de
donn~es ainsi que la donn~e elle-m~me est de Iongueur variable. L'en-t&e contient les details de
l'entreposage des donn~es et l'information de la source et de la destination.

Cette specification est assez versatile pour permettre aux paquets de donnres d'&re
utilis~es partout dans les simulateurs. I1 est probable que cette specification deviendra plus
raffin~e quand la definition du syst~me sera termin~e.

iii

iv

Executive Summary

In 1997, Defence Research Establishment Ottawa (DREO) and Communications Research
Centre (CRC) started research into an omni-band reconfigurable terminal. Such a terminal will
enable soldiers to use a single terminal to communicate over any satellite communications or
terrestrial link. On ships, several of these terminals, to provide redundancy and concurrent
communications over different links, could replace the current multiplicity of communications
installations. Each terminal will support multiple standards and the first one to be implemented
will be extremely high frequency (EHF) medium data rate (MDR) communications. This also
provide the technical knowledge necessary to support the Canadian Military Satellite
Communications project.

In the MDR system, there are two simulators: the payload simulator and the ground
terminal simulator. Each simulator has a PC-based host that provides operator control, permanent
storage, and development capability. There is also a digital chassis containing several digital
signal processor boards, custom general purpose boards, and specialized analog-to-digital and
input/output boards. Together, these provide the functionality for ground terminal/payload control,
access/resource control, synchronization control and communications processing. A radio
frequency chassis includes hopping synthesizers, up and down conversion chains with associated
amplifiers, mixers and filters.

Within the simulators, specifically on the DSP boards, there will be many types of data
passed between boards, processors and routines. This data has many forms, some examples are
data bits, encoded data bits, cryptographic key streams, synchronization estimates and analog-to-
digital samples. It is desirable to have a common format that includes the various types of data.
Having a common format would simplify interfacing and make it easier to reconfigure for different
communications systems.

Within this document, the data packets used between modules within the simulator are
specified. The requirements of flexibility, simplicity and future expandability drove the design of
the data packets. It is important that the data packets be flexible to support different data such as
bits, symbols, or digitized analog samples. This data can be packed for storage efficiency or
unpacked for rapid manipulation. The extraction and storing of data within the packets is simple
and does not take excessive overhead. The data packet design uses the target processor
(TMS 320C6201) word size and includes aids in the header to simplify extraction of the data.
Since the data packet design precedes the detailed system design, future expandability is a key
requirement. The design allows for different data types, sizes and packing. It also allows for
different usage of the data packets that cannot be predicted at this time.

This document describes the format of the data packet and provides a section on the
validation that must be performed by each module prior to using the data. Also provided is a
description of the minimum implementation of data packet handling for initial development of bit
handling and A/D sample handling modules. Expansion capabilities of the data packet
specification are given. Finally, coding excerpts for handling of these data packets and the listing
of necessary definitions for coding are given.

The data packet consists of a variable length header and a variable length data area. The
header includes the details of the data storage as well as information about the data source and
destination. The specification allows for future expansion in the header (format and size) and for
different data formats.

v

There is sufficient versatility in the specification to allow the data packet to be used for all
known intermodule data, and for new requirements. It is likely that this specification will be further
refined as requirements become firmer and the design of the simulator becomes better defined.

vi

Table of Contents

Abstract .. iii

R su ... iii

Executive Sum m ary .. v

Table of Contents .. vii

List of Abbreviations .. ix

1. Introduction ... I 1

1. 1 The Problem ... 1
1.2 Requirements ... 1
1.3 O u tlin e ... 2

2. Data Packet Form at ... 3

2 .1 G en era l .. 3
2 .2 H ead er ... 3
2.3 Data Area .. 6

3. Essential Validation .. 7

4. Minimum Implementation for Initial Development .. 7

4 .1 G en era l .. 7
4.2 Bit Data Packets .. 8
4.3 A/D Sample Data Packets .. 8

5. Expansion of the Data Packet Specification .. 8

5 .1 G en eral .. 8
5.2 Special Fields .. 8
5.3 Use of Symbols for Legal Values ... 9
5.4 Inclusion of Support for Floating Point ... 9
5.5 Data Type Field .. 9
5.6 Header Size Field .. 9
5.7 Header Type Field .. 9

6. Exam ple Code Excerpts ... 9

6 .1 G en eral .. 9
6.2 Invoking Process .. 10
6.3 M odule Initial Code .. 10
6.4 M odule Extracting Unpacked Data ... I I
6.5 M odule Extracting Arbitrarily Packed Data .. 11

7. DATAPACK.H Listing ... 11

8. Conclusion ... 13

vii

viii

List of Abbreviations

A/D Analog to digital
C6201 Texas Instruments fixed-point TMS 320C6201 digital signal processor
C6701 Texas Instruments floating-point TMS 320C6701 digital signal processor
CRC Communications Research Centre
DATAPACK.H Header file containing data packet definitions for 'C' programming
DREO Defence Research Establishment Ottawa
DSP Digital signal processor
EHF Extremely high frequency
FSK Frequency-shift keying modulation
I In-phase
I/O Input/output
MDR Medium Data Rate (4.8 kb/s to 2 Mb/s)
PCI A high-speed bus used in modem personal computers
Q Quadrature
RF Radio frequency
x86 The family of personal computer processors including 486 and Pentium
VME A bus used for plug-in processors

Hexadecimal Notation

OxFF represents FF in base 16 and is equal to 255 in base 10. This follows the 'C' convention.

Programming Definition Notation

There are several definitions to be used by 'C' programmers with names similar to
OFFUNIQUEWORD or HDRNORMAL. These are definitions supplied in DATAPACK.H
(section 7 contains the listing) and should be used rather than hard-coded numbers when
programming in 'C'.

ix

N

x

1. Introduction

In 1997, Defence Research Establishment (DREO) and Communications Research Centre
(CRC) started research into an omni-band reconfigurable terminal. Such a terminal will enable
soldiers to use a single terminal to communicate over any SATCOM or terrestrial link. On ships,
several of these terminals, to provide redundancy and concurrent communications over different
links, could replace the current multiplicity of communications installations. Each terminal will
support multiple standards. The first standard to be implemented will be extremely high frequency
(EHF) medium data rate (MDR) communications. This also provide the technical knowledge
necessary to support the Canadian Military Satellite Communications project.

Fig. 1 shows the block diagram for the MDR system simulator. There are two main
simulators within the system: the payload simulator and the ground terminal simulator. Each
simulator has a PC-based host that provides operator control, permanent storage, and development
capability. The host is the only portion that interacts with the user. In addition to the host, there is
a digital chassis containing several digital signal processor (DSP) boards, custom general purpose
boards, and specialized analog-to-digital (A/D) and input/output (1/0) boards. Together, these
provide the functionality for ground terminal/payload control, access/resource control,
synchronization control and communications processing. A radio frequency (RF) chassis includes
hopping synthesizers, up and down conversion chains with associated amplifiers, mixers and
filters. The RF chassis is based on a modular design to allow substitution for different bands.

1.1 The Problem

Within the simulators, specifically on the DSP boards, there will be many types of data
passed between boards, processors and routines. This data has many forms. Some examples are
data bits, encoded data bits, cryptographic key streams, synchronization estimates and analog-to-
digital samples. It is desirable to have a common data format that includes all the various types of
data. A common format simplifies interfacing and reconfiguration for different communications
systems.

This document specifies the data packets used between modules within the simulator. An
example of such a packet is the data packets used between the coder and interleaver of the
communications processor.

1.2 Requirements

The requirements of flexibility, simplicity and future expandability drove the design of the
data packets. It was important that the data packets be flexible to support different data such as
bits, symbols, or digitized analog samples. This data can be packed for storage efficiency or
unpacked for rapid manipulation.

The process of extraction and storage of data within the packets must be simple and not
take excessive overhead. Thus the data packet design uses the target digital signal processor
(C620 1) word size. Aids were also included, in the header, to simplify extraction of the data.
Since the data packet design precedes the detailed system design, future expandability is a key
requirement. The design allows for different data types, sizes and packing. It also allows for
different usage of the data packets that cannot be predicted at this time.

Payload Simulator

x86 PC DSP/Boards Modules
(PCI orVME) (PCI orVME) (Chassis)

Host Payload
Main Controller RFIF

Program

Resource
Controller

Synchronization
Controller

Communications
Controller

Ground Terminal Simulator

x86 PC DSP/Boards Modules
PCI or(VME) (PCI orVME) (Chassis)

Host GT
Main Controller RFIF

Program
Access

Controller

Synchronization
"Controller

Communications
Controller

Fig. 1. System block diagram.

1.3 Outline

This document first describes the format of the data packet, then the validation procedure
that must be performed by each module prior to using the data is given. This is followed by a
description of the minimum implementation of data packet handling for initial development of bit
handling and A/D sample handling modules. Expansion capabilities of the data packet
specification are given. Example coding excerpts are given for handling of these data packets.
Finally, the listing of DATAPACK.H is given which contains the necessary definitions for coding.

2

2. Data Packet Format

2.1 General

The data packet consists of a variable length header and a variable length data area shown
in Fig. 2. The header includes the details of the data storage as well as information about the data
source and destination. The specification allows for future expansion in the header (format and
size) and for different data formats.

Header
(Variable Length)

Data
(Variable Length)

Fig. 2. Data packet diagram.

The intent with data packets is to minimize unnecessary data transfer or reformatting.
Modules will receive pointers to input and output data packets rather than being passed the data on
the stack. Ideally, the data will only be extracted once, and stored once during the processing.

2.2 Header

The header is variable length, with a minimum size of 14 32-bit words. The preferred size
to use is 16 which allows for two unused special fields at the end of the header. If more special
fields are required, the header length can be increased to the necessary value. Fig. 3 shows the
header including the distinct 32-bit fields.

The header consists of 16 fields of 32 bits each. All fields in the header must be
completed. The different fields of the header, along with values to be used and ".h" definitions
used to access them are given the following table:

3

0 Unique Word

1 Header Type

2 Header Size

3 Data Size

4 Data Source

5 Data Destination

6 Data Type

7 Word Size

8 Word Type

9 Packing Density

10 Symbol Size

11 Symbol Mask (low word)

12 Symbol Mask (high word)

13 Output Format
14 Special 0

15 Special 1

Fig. 3. Data packet header diagram.

Table 1. Data packet header fields.

Offset Definition Description Legal Values
0 OFFUNIQUEWORD This is a unique word used to HDRUNIQUEWORD

delimit and identify a data
packet.

OFFHEADERTYPE For future expansion, this HDRNORMAL
field allows different kinds of
headers (other values may be added later)

2 OFFHEADERSIZE This indicates the header size Minimum 14, but normally 16
in 32-bit words. Larger sizes
allow more special fields.
Since the data follows
immediately after the header,
this also is the offset to the
data area.

3 OFFDATASIZE This is the data area size in Minimum 1
32-bit words.

4

Offset Definition Description Legal Values
4 OFFDATASOURCE This is the module that is the MODACCESSGENERATION

source of the data. It can be MOD ACCESS-PROCESSING
used to verify the data MODCRCDECODER
packet's origin. It can also be MODCRCENCODER
used by a module to MODDATAINPUT
distinguish data packets from MOD DATA-OUTPUT
various sources. MOD DECODER

MOD_DEINTERLEAVER
MOD ENCODER
MODDEMODULATOR
MODFRAME EXTRACTOR
MODFRAMEFORMATTER
MOD FREQUENCY DEPERMUTE
MODFREQUENCY PERMUTE
MOD INTERLEAVER
MOD MODULATOR
MOD RESOURCE ALLOCATOR
MODRESOURCEREQUESTER
MODSYNC PROCESSOR
MOD TIMECONTROLLER
MOD_TIME DEPERMUTE
MOD_TIMEPERMUTE
MOD TRANSEC

5 OFFDATADESTINATION This is the destination of the Same as above. Also, for output
packet. For an input packet, packets the following value is
this should match the normally used:
executing module. For an MODUNKNOWN
output packet, typically the
module is not known.

6 OFFDATATYPE This is the type of data TYPE-STANDARD
packet. Some modules may
receive different data and this (others value may be added later)
allows them to be
distinguished.

7 OFFWORDSIZE This is the word size used for WORD_32_BITS (normal)
extracting the data from the WORD_64_BITS (used only for
data area. (It is not used for double and 40 bit
header/data sizes which are longs)
always 32 bits.)

8 OFFWORDTYPE This is the bit format of the WORDUNSIGNED (nonnal bits)
data. Integer values are WORDINTEGER (nonnal
signed. Floating point values samples)
have sign and exponent. WORD FLOAT (floating point)

9 OFFPACKINGDENSITY This is the number of 1 (unpacked)
symbols stored per word (32 2 or more (packed)
or 64 bits depending on word
size). Symbols cannot cross The maximum packed value is:
word boundaries. Word Size / Symbol Size

10 OFFSYMBOLSIZE The number of bits per See Table 2
symbol

II OFFSYMBOLMASKLO This is the mask used to See Table 2
extract bits from a packed
word. For 32-bit word size,
only the low part is used. For
64-bit word size, the high

I part (below) is also used.

5

Offset Definition Description Legal Values
12 OFFSYMBOLMASKHI This is the high part of the See Table 2

mask used to extract bits
from a packed word. This
part is only used for 64-bit
word size and then is used
with the low part of the mask
(above).

13 OFFOUTPUTFORMAT This is the output format OUTUNSPECIFIED (no
requested by the process preference)
invoking the module for most OUTUNPACKED (I symbol /
efficient processing of the word)
subsequent module. It should OUTPACKED (maximum
be adhered to where possible, symbols I
but is not compulsory. word)

(other values may be added later)

14 OFFSPECIAL_0 This is a special field as yet SPEC UNUSED (not used now)
unassigned to allow for future
expansion and custom uses
between modules.

15 OFFSPECIALI This is a special field as yet SPEC UNUSED (not used now)
unassigned to allow for future
expansion and custom uses
between modules.

The next table presents the various types of data symbols to be used in the data packets

along with their associated sizes and the masks used to extract them from the data area.

Table 2. Data packet header symbol size and mask detail.

Symbol Size Symbol Mask Symbol Mask Use

(bits) (Low word) (High word)

1 OxI Ox0 normal bits

3 0x7 Ox0 FSK symbol

3 or 4 0x7 or OxF Ox0 soft decision bits
8 OxFF Ox0 byte

16 OxFFFF Ox0 A/D samples
32 OxFFFFFFFF Ox0 integer
32 OxFFFFFFFF OxO float
40 OxFFFFFFFF OxFF long integer
64 OxFFFFFFFF 0xFFFFFFFF double

2.3 Data Area

The data area, which follows immediately after the header, consists of a sequence of
symbols. If in unpacked format, there is one symbol per word. If packed, the maximum number of
symbols that fit evenly in a word will be used. Packed symbols do not cross word boundaries.
This can result in some wasted bits. Any unused bits must be set to 0. (Sign extension is not
allowed.)

6

Long or double values are to be stored least significant word first (lowest address)
followed by most significant word. A/D samples will be stored with the in-phase (I) sample first
followed by the quadrature (Q) sample.

The size of the data area is application/module dependent but the design goal is to ensure a
data packet contains one frame's worth of data. The module should not restrict the data size and
should be able to handle data packets ofjust one symbol. Varying size of data packets and module
algorithms mean that there will not be a one-to-one correspondence between input packets and
output packets. All modules will return a logical TRUE if the output packet contains valid data.
(This will not be part of the packet itself.)

3. Essential Validation

To ensure robustness, it is essential that all modules validate the data packet header prior
to processing the data. Validation is to ensure that it is a data packet, that it was meant to be
processed by this module, and finally that it is in a format that can be handled by this module. The
fields that must be validated are:

a. Unique Word: must be HDR UNIQUEWORD
b. Header Type: must be a supported type
c. Header Size: must be at least 14
d. Data Destination: must match current module
e. Data Type: must be a supported type
f. Word Size: must be a supported size
g. Word Type: must be a supported type
h. Packing Density: must be a supported density
i. Symbol Size: must be a supported size
j. Output Format: must be a supported format

Validation must proceed in the order of the fields. This is especially important if different
headers types are used later where some of the fields may be redefined. If any validation fails, it is
important that processing not continue and that an error message be generated.

The header does not include any special error checking fields such as a checksum. This is
because the overhead involved in computing end error check was too large compared to the
minimal risk of an erroneous transfer of data packet. Packets will be transferred within the same
DSP board or through a short shielded link, and it is unlikely that errors will be caused.

4. Minimum Implementation for Initial Development

4.1 General

For initial development, it is not necessary that all modules support all possible
combinations of data storage. For purposes of commonality and interoperability, there are two
minimum implementations of data packet processing. The minimum implementation to be used

7

depends on the type of data: bits or A/D samples. Modules must always return errors in the event
that they cannot handle the data packet received.

4.2 Bit Data Packets

Almost all modules in the data communications processor deal with bits. The minimum
implementation for these modules (such as interleavers and coders) is:

a. Header Type: HDR NORMAL
b. Header Size (32-bit words): 16 (this allows two unused special fields)
c. Data Type: TYPESTANDARD
d. Word Size: WORD 32 BITS
e. Word Type: WORDUNSIGNED
f. Packing Density (symbols/word): I (unpacked)
g. Symbol Size (bits): 1
h. Symbol Mask: OxI
i. Output Format: OUTUNPACKED

4.3 A/D Sample Data Packets

Within the data communications processor, at least two modules deal with digitized
samples: the modulator and demodulator. To handle A/D samples, modules must also support an
additional implementation:

a. Header Type: HDRNORMAL
b. Header Size (32-bit words): 16 (this allows two unused special fields)
c. Data Type: TYPESTANDARD
d. Word Size: WORD 32 BITS
e. Word Type: WORDINTEGER
f. Packing Density (symbols/word): 1 (unpacked)
g. Symbol Size (bits): 16
h. Symbol Mask: OxFFFF
i. Output Format: OUTUNPACKED

5. Expansion of the Data Packet Specification

5.1 General

It is anticipated that the definition provided here will need to be expanded as the
development of the simulator progresses and requirements become better defined. The
specification deliberately includes room for expansion in various areas described below in order
from least to most effect on the specification. E

5.2 Special Fields

8

Every data packet will normally have at least two special fields at the end (to round the
header size to 16 words). At this time, there is no special use for the fields. Later, they could be
used to identify an access, user, service or terminal for the access control routines. They could
also be used to include time (absolute or by hop number, and frame number) for synchronization
routines. If the data has some form (such as rectangular) then the special fields could be used for
row and column size.

5.3 Use of Symbols for Legal Values

All options provided for the legal values are identified by symbols defined in
DATAPACK.H. It is relatively easy to add additional options by adding more definitions. For
example, if more detail if needed for the output format field, it would be easy to add a symbol for a
specific type of packed data output (say 16 bits per word).

5.4 Inclusion of Support for Floating Point

Though the target digital signal processor, C6201, does not support floating point, the
6701 will have that capability. It may be advantageous to use floating point representation
especially for packets used by the synchronization processor. The definitions provided in
DATAPACK.H contains symbols to support single and double precision floating point data.

5.5 Data Type Field

Some modules, such as the synchronization processor, will generate or accept different
types of data, possibly to or from the same module. By specifying a different data type, type data
packets can be easily distinguished.

5.6 Header Size Field

The header size, recommended to be 16, allows for two special fields. By increasing the
header size, extra fields which are needed for special data packets can be accommodated. See the
previous section on special fields for their use.

5.7 Header Type Field

If the data packet specification is too restrictive for some unanticipated requirement, then a
separate header type can be defined. This allows changing the definition of all subsequent fields.
A different header type will only be used as a last resort.

6. Example Code Excerpts

6.1 General

Below are examples of code to demonstrate how to invoke a module, how to do the
validation, and how to extract unpacked and packed data. This code has not been tested. The
definitions can be found in DATAPACK.H which is also listed at the end of this document.

9

6.2 Invoking Process

This portion of the code is in the invoking process (for example the one that calls the
interleaver). The code used here reflects the use of an interleaver module and the data packet has a
header length of 16 with 32-bit data words. Note to minimize data transfer, the invoking routine
passes a pointer to the data packet rather than the packet itself. The routine return data in the
output packet withou modifying the input packet. Also note that the interleave state is passed to
the module as well - this allows multiple uses of the interleaver without reinitializing for each use.

unsigned int datapacketin[48];
unsigned int data_packet_out[48];
struct InterleaverState data interleaver

... initialize data interleaver for startup

... set values in header and data area of data_packetin

if (interleave(data_packet_in,data-packetout,&data interleaver))
... process data_packetout

6.3 Module Initial Code

Upon receipt of a data packet, the interleaver module validates the data packet and sends
an error message if the format is not right or not supported (this is shown by the pseudo-code
"...crash"). While validating the header, the module also does some preliminary work to prepare
for data extraction.

int interleave(unsigned int *dpin,unsigned int *dp_out,
struct InterleaverState *myinterleaver)

unsigned int header size; // Size of header (words)
unsigned int packing density // Number of symbols per word
unsigned int *data base; // Pointer to start of data
unsigned int symbol_size // Number of bits / symbol
unsigned int symbol mask; // Symbol bit mask
unsigned int data word N; // N h symbol value
unsigned int word-N; -- Word number of desired symbol
unsigned int shiftN; // Symbol location within a word

if (dpin(OFFUNIQUEWORD] != HDR UNIQUEWORD) ... crash
if (dpin(OFFHEADER TYPE] H= HDR NORMAL) ... crash
header size = dpin[OFF_HEADER_SIZE];
if (header size < 14) ... crash
if (dp_in[OFFDATADESTINATION] != MODINTERLEAVER) ... crash
if (dpin[OFFDATATYPE] != TYPE-STANDARD) ... crash
if (dpin[OFFWORDSIZE] 1= WORD 32 BITS) ... crash
if (dpin[OFFWORD TYPE] != WORD UNSIGNED) ... crash
packingdensity = dpin[OFFPACKINGDENSITY];
if (packingdensity != 1) ... crash
symbolsize = dpin(OFFSYMBOLSIZE];
if (symbol size != 1) ... crash
symbol mask = dpin[OFF_SYMBOLMASKLO];
data-base = dpin + header size;
if ((dp-in[OFFOUTPUT FORMAT] .= OUT UNPACKED) II

(dpin(OFFOUTPUTFORMAT] != OUT UNSPECIFIED)) ... crash

10

6.4 Module Extracting Unpacked Data

Within the interleaver module, when the Nh symbol is required, the following code can be
used as long as the data is unpacked (packing density = 1).

1 data word N = data base[N];

6.5 Module Extracting Arbitrarily Packed Data

Within the interleaver module, when the N• symbol is required, the following code works
regardless of whether the data is packed or not. This code is less efficient than the previous code
for unpacked data. Simple optimizations to this code are available if the access to the data is
sequential.

word N = N / packingdensity;
shiftN = (N % packing-density) * symbol size;
data word N = (data base[word N] >> shift N) & symbolmask;

7. DATAPACK.H Listing

Below is the listing for the header file containing the symbols used in 'C' programs.

/* */

*D A T A P A C K . H */* */
Header file with definitions necessary for the header of intermodule */

/* data packets within the DSP portion of the simulator. This header file
/* should be included in all modules.

/* */

/* Author: Robin Addison
/* Language: TI C for 6201, no special compile flag requirements */
/* Hierarchy: "Include" with all modules that pass data at compile time */
/* Purpose: Provide definitions to access elements of the data packet
/* Inputs: NA
/* Outputs: NA */
/* Returns: NA

/* */
/* Change History:
/* */

/* Date Version Programmer Comment
/* ---------------------- --------------------------------------- *1
/* 11 Jun 98 1.0 Robin Addison First written */

/*--*

/* Version number */
#define VERDATAPACKH 1.0

/• Header offsets and definitions */
#define OFF UNIQUE WORD 0

#define HDR_UNIQUEWORD 0xF981006F

11

#define OFF HEADER TYPE

#define HDR ILLEGAL 0

#define HDR NORMAL 1

#define OFF HEADER SIZE 2

#define OFF-DATA SIZE 3

#define OFF-DATA-SOURCE 4 t

#define MOD ILLEGAL 0
#define MOD UNKNOWN 1
#define MOD DATA INPUT 2
#define MOD DATA-OUTPUT 3
#define MOD-ENCODER 4
#define MOD DECODER 5
#define MOD INTERLEAVER 6
#define MOD DEINTERLEAVER 7

#define MOD FRAME FORMATTER 8
#define MOD-FRAME-EXTRACTOR 9
#define MOD TIME PERMUTE 10

#define MOD TIME DEPERMUTE 11

#define MOD FREQUENCYPERMUTE 12
#define MOD FREQUENCYDEPERMUTE 13
#define MOD MODULATOR 14
#define MOD DEMODULATOR 15
#define MOD TRANSEC 16
#define MOD SYNC PROCESSOR 17

#define MOD TIME CONTROLLER 18
#define MOD CRC ENCODER 19
#define MOD CRC DECODER 20
#define MOD ACCESS PROCESSING 21
#define MOD ACCESS GENERATION 22
#define MOD-RESOURCE ALLOCATOR 23
#define MOD RESOURCEREQUESTER 24

#define OFF DATA DESTINATION 5
/* use definitions from OFFDATASOURCE /

#define OFF DATA TYPE 6
#define TYPE ILLEGAL 0
#define TYPE STANDARD 1

#define OFF WORD SIZE 7
Odefine WORD ILLEGAL 0
#define WORD 32 BITS 1
#define WORD_64_BITS 2

#define OFF WORD TYPE 8
/* use WORD ILLEGAL from OFFWORD SIZE */
#define WORD UNSIGNED 1
#define WORD INTEGER 2
#define WORD FLOAT 3

#define OFF PACKING DENSITY 9
#defi~ne PACK ILLEGAL 0

#define OFF SYMBOL SfZE 10

#define SfZE ILLEGAL 0
#define OFF SYMBOL MASK LO 11

#define OFF SYMBOL MASK HI 12
#define OFF-OUTPUT-FORMAT 13

#define OUT ILLEGAL 0
#define OUT UNSPECIFIED 1
#define OUT UNPACKED 1000
#define OUT PACKED 2000

#define OFF SPECIAL 0 14
#define SPEC UNUSED 0

#define OFF SPECIAL 1 15
/* as above*/

1

12

8. Conclusion

The specification for a variable length data packet (including variable length header and
data areas) was presented. There is sufficient versatility in the specification to allow the data
packet to be used for all known intermodule data, and for new requirements.

All packets must have their header validated before use and the essential validations were
described. A minimum implementation necessary for all modules was provided for initial
development. The expansion capabilities of the specification were presented. Finally, coding
examples including symbol definition file listing were shown.

It is likely that this specification will be further refined as requirements become firmer and
the design of the simulator becomes better defined.

13

15

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

(highest classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (the name and address of the organization preparing the document. 2. SECURITY CLASSIFICATION
Organizations for whom the document was prepared, e.g. Establishment sponsoring (overall security classification of the document
a contractor's report, or tasking agency, are entered in section 8.) including special warning terms if applicable)

Defence Research Establishment Ottawa
Ottawa, Ontario UNCLASSIFIED
KIA 0Z4

3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S,C or U) in parentheses after the title.)

MDR/Omni-band Reconfigurable Terminal: Data Packet Specification (U)

4. AUTHORS (Last name, first name, middle initial)

Addison, Robin D.

5. DATE OF PUBLICATION (month and year of publication of 6a. NO. OF PAGES (total 6b. NO. OF REFS (total cited in
document) containing information. Include document)

August 1998 Annexes, Appendices, etc.)
23 0

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of
report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.

DREO Technical Note

8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include the
address.

SST, Defence Research Establishment Ottawa
Ottawa, Ontario, K1A 0Z4

9a. PROJECT OR GRANT NO. (if appropriate, the applicable research 9b. CONTRACT NO. (if appropriate, the applicable number under
and development project or grant number under which the document which the document was written)
was written. Please specify whether project or grant)

5call

10a. ORIGINATOR'S DOCUMENT NUMBER (the official document 10b. OTIIER DOCUMENT NOS. (Any other numbers which may
number by which the document is identified by the originating be assigned this document either by the originator or by the
activity. This number must be unique to this document.) sponsor)

DREO TECHNICAL NOTE 98-009

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security classification)

(X) Unlimited distribution
Distribution limited to defence departments and defence contractors; further distribution only as approved
Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved
Distribution limited to government departments and agencies; further distribution only as approved
Distribution limited to defence departments; further distribution only as approved
Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond to
the Document Availability (11). however, where further distribution (beyond the audience specified in 11) is possible, a wider
announcement audience may be selected.)

Unlimited Announcement

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM RA.W (24 Nov 93)

16

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S). (C), or (U).
It is not necessary to include here abstracts in both official languages unless the text is bilingual).

In 1997, Defence Research Establishment Ottawa and Communications Research Centre started research into an
omni-band reconfigurable terminal. Such a terminal will enable soldiers to use a single terminal to communicate over any
satellite communications or terrestrial link. Each terminal will support multiple standards and the first one to be implemented
will be extremely high frequency medium data rate communications. Development begins with two hardware simulators:
the payload simulator and the ground terminal simulator. Each simulator has a PC-based host to run the simulator, a digital
chassis containing several digital signal processor boards to run the payload or terminal, and a radio frequency chassis to

interface to the digital boards. Within the simulators, specifically on the digital signal processor boards, it is desirable to
have a common data format for interchange between modules to simplify interfacing and reconfiguration.
This document contains the data packet format, data packet validation, description of the minimum implementation, expansion
capabilities, coding excerpts and, the listing of necessary definitions for coding. The requirements of flexibility, simplicity
and future expandability drove the design of the data packets. Since the data packet design precedes the detailed system
design, future expandability was a key requirement. The data packet consists of a variable length header and a variable
length data area. The header includes the details of the data storage as well as information about the data source and
destination.

There is sufficient versatility in the specification to allow the data packet to be used for all known intermodule data,
and for new requirements. It is likely that this specification will be further refined as requirements become firmer and the
design of the simulator becomes better defined.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment
model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected
from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to
select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

satellite communications
data packet
MDR

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

